अनुक्रमांक		मुद्रित पृष्ठों की संख्या :3		
नाम		355(JE)		
175	2024			
2024				
कक्षा 12- भौतिक विज्ञान				
समय : 3 घण्टे	: 15 मिनट	[पूर्णांक : 70		
	मी प्रश्न अनिवार्य है।			
` ,	। त्र में 5 खण्ड हैं-खण्ड 'अ', खण्ड 'ब' खण्ड 'स', खण्ड 'द', खण्ड 'य	Γ' Ι		
(3) खण्ड 'अ'	बहुविकल्पीय है तथा प्रत्येक प्रश्न 1 अंक का है।			
• •	अतिलघु उत्तरीय है तथा प्रत्येक प्रश्न 1 अंक का है।			
(5) खण्ड 'स'	लघु उत्तरीय है, प्रत्येक प्रश्न 2 अंक के हैं।			
(6) खण्ड 'द'	लघु उत्तरीय है, प्रत्येक प्रश्न 3 अंक के हैं।			
(7) खण्ड 'य'	विस्तृत उत्तरीय है, प्रत्येक प्रश्न 5 अंक के हैं। इस खण्ड के चारों प्रश्नों	में आन्तरिक विकल्प का चयन		
प्रदान किया गर	गा है। ऐसे प्रश्नों में आपको दिए गए चयन में से केवल 1 प्रश्न ही करन	⊺ है ।		
खण्ड'अ'				
1. (क) वैद्युत विभव का मात्रक है-				
(i)	J/C			
(ii)	J-C			
(iii)	C/J			
(iv)	N/C			
(ख) किसी	तार का विशिष्ट प्रतिरोध 500Ω है, उसकी वैद्युत चालकता			
होगी-	1			
(i)	0.002 ओम ⁻¹			
(ii)	50 ओम ⁻¹			
(iii)	0.02 ओम ⁻¹			
(iv)	500 ओम ⁻¹			
(ग) चुम्बर्क	ाय क्षेत्र (B) के समान्तर चाल (v) से गतिशील आवेश (१) पर चुम्बर्व	<u> होय क्षेत्र के कारण लगने वाले</u>		
बल क	। मान होगा-	1		
(i)	qvB			
(ii)	qB/m			
(iii)	m/qB			
(iv)	शून्य			
(घ) लेन्ज व	n नियम इस भौतिक राशि के संरक्षण पर आधारित है-	1		
(i)	ऊर्जा संरक्षण के सिद्धान्त पर			

	(11)	जावरा सरवण क सिद्धाना पर	
	(iii)	संवेग संरक्षण के सिद्धान्त पर	
	(iv)	द्रव्यमान संरक्षण के सिद्धान्त पर	
	(ङ) प्रतिरोध	ध $\mathbf{R},$ प्रेरकत्व $\mathrm L$ तथा संधारित्र $\mathbf C$ श्रेणी क्रम में जोड़े गये हैं। प्रत्यावर्ती धारा स्त्रोत र्क	गे आवृत्ति n
	तथा अ	नुनादी आवृत्ति \mathbf{n}_{r} है। किस स्थिति में धारा विभव से पश्चगामी होगी?	1
	(i)	n = 0	
	(ii)	n <n<sub>r</n<sub>	
	(iii)	$n = n_r$	
	(iv)	$n>n_r$	
	(च) वैद्युत [ः]	चुम्बकीय तरंगों में वैद्युत तथा चुम्बकीय क्षेत्र सदिशों में कलान्तर होता है-	1
	(i)	0	
	(ii)	π	
	(iii)	$\pi/2$	
	(iv)	$3\pi/2$	
		ਕੁ ਾਫ਼ 'ब'	
2.	(क) पूर्ण उ	आन्तरिक परावर्तन से आप क्या समझते हैं?	1
	(ख) आइन	सटीन का प्रकाश विद्युत समीकरण लिखिए।	1
	(ग) हाइड्रे	जिन परमाणु में इलेक्ट्रॉन की कक्षीय गति का न्यूनतम कोणीय संवेग लिखिए।	1
	(घ) नाभिक	कीय रिएक्टर में मंदक का क्या कार्य है? किसी एक मंदक का नाम लिखिए।	1
	(ङ) एक स	प्रमतल वैद्युत चुम्बकीय तरंग के वैद्युत क्षेत्र का आयाम $3.0 imes 10^{\text{-4}}\ ext{V/m}$ है। इसवे	h चुम्बकीय क् <u>षे</u> त्र
	का अ	।ायाम ज्ञात कीजिए।	1
	(च) स्थिर	वैद्युतिकी में गौस की प्रमेय लिखिए।	1
		खण्ड 'स'	
3.	(क) m द्र	व्यमान तथा q आवेश का एक कण एकसमान वैद्युत क्षेत्र E में विरामावस्था से चलव	कर d दूरी तय
	करता है।	सिद्ध कीजिए कि कण द्वारा अर्जित वेग $\mathbf{v}=\sqrt{rac{2qEd}{m}}$ है।	2
		विभव की परिभाषा, मात्रक तथा विमाएँ लिखिए।	2
	(ग) एक त	तार का प्रतिरोध 2Ω है। तार की त्रिज्या खींचकर आधी कर दी जाती है। नये तार का	। प्रतिरोध ज्ञात
	कीजि	ए।	2
	(घ) बॉयो-	सेवर्ट का नियम क्या है?	2
		अथवा	
	प्रत्याव	वर्ती धारा के वर्ग-माध्य-मूल मान का व्यंजक प्राप्त कीजिए।	2
		खण्ड 'द'	
4.	(क) एक'	$50\mathrm{W}$ और $100\mathrm{V}'$ लैम्प को $200\mathrm{V}$ और $50~\mathrm{Hz}$ विद्युत मेन्स से जोड़ा गया है। र	लैम्प को जलाने
	के लिए उर	पके श्रेणीक्रम में जुड़े आवश्यक संधारित्र की धारिता ज्ञात कीजिए-	3
	(ख) एक स	प्तमतल विद्युत चुम्बकीय तरंग में दोलनी चुम्बकीय क्षेत्र निम्न में दिया गया है-	3
		$B_{y} = 8 \times 10^{-6} \sin(2 \times 10^{11} t + 300 \pi x) T$ गणना कीजिए-	

(i) विद्युत चुम्बकीय तरंग की तरंगदैर्ध्य (ii) दोलनी चुम्बकीय क्षेत्र का आयाम (iii) दोलनी वैद्युत क्षेत्र का आयाम। (ग) किसी प्रिज्म के लिए, उसके पदार्थ के अपवर्तनांक का व्यंजक न्यूनतम विचलन की स्थिति में ज्ञात 3 (घ) हाइगेन्स का द्वितीयक तरंगिकाओं का सिद्धान्त समझाइए तथा इसके आधार पर प्रकाश के परावर्तन की व्याख्या कीजिए। 3 (ङ) आइन्स्टीन की प्रकाश वैद्युत समीकरण लिखिए तथा इसकी व्याख्या कीजिए। 3 5. (क) दो बिन्दु आवेश +9e व +e एक दूसरे से 16~cm की दूरी पर स्थित हैं। इनके बीच एक आवेश q को कहाँ रखा जाए कि वह संतुलन में हो? 3 (ख) वैद्युत द्विध्रुव के कारण अक्षीय स्थिति में किसी बिन्दु पर वैद्युत विभव के सूत्र का निगमन कीजिए। 3 (ग) किरचॉफ के नियमों की सहायता से धारा i_1 , i_2 तथा i_3 के मान दिये गये परिपथ में ज्ञात कीजिए। (घ) बायो तथा सावर्ट का नियम चित्र द्वारा समझाइए। चुम्बकीय क्षेत्र का सूत्र लिखिए। 3 (ङ) एकसमान चुम्बकीय क्षेत्र में एक धारावाही लूप लटकाया गया है। इस लूप पर लगने वाले बल-युग्म के आघूर्ण का सूत्र निगमित कीजिए। 3 अथवा स्वप्रेरण तथा अन्योन्य प्रेरण में क्या अन्तर है? प्रत्येक का एक-एक उदाहरण देते हुए स्पष्ट कीजिए 6. गॉस प्रमेय का उल्लेख कीजिए। इसकी सहायता से अनन्त लम्बाई के पतले आवेशित तार के कारण किसी बिन्द पर वैद्युत क्षेत्र की तीव्रता के लिए व्यंजक प्राप्त कीजिए। 5 धातुओं में मुक्त इलेक्ट्रॉनों के अनुगमन वेग के सिद्धान्त पर ओम के नियम का निगमन कीजिए। 7. दो समान्तर धारावाही चालकों के बीच लगने वाले बल के लिए सूत्र स्थापित कीजिए। इसके आधार पर वैद्युत धारा के मानक ऐम्पियर की परिभाषा दीजिए। 5 पतले लेन्स के लिए सूत्र $\frac{1}{f}=(n-1)\left(\frac{1}{R1}-\frac{1}{R2}\right)$ स्थापित कीजिए। 8. हाइगेन्स के द्वितीयक तरंगिकाओं के सिद्धान्त के आधार पर प्रकाश के अपवर्तन की व्याख्या कीजिए तथा स्नैल के नियम का निगमन कीजिए। 5 अथवा नाभिकीय विखण्डन तथा नाभिकीय संलयन क्रियाओं से आप क्या समझते हैं? 9. किसी प्रत्यावर्ती स्त्रोत से प्रतिरोध, प्रेरक तथा संधारित्र श्रेणीक्रम में जुड़े हैं। परिपथ आरेख बनाइये। इस परिपथ की प्रतिबाधा एवं अनुनादी आवृत्ति ज्ञात कीजिए। 5

अथवा

दो कुण्डलियों के बीच अन्योन्य प्रेरण गुणांक को परिभाषित कीजिए। इसका मात्रक लिखिए तथा उसे परिभाषित

कीजिए।